

UMAN – A PLURALISTIC VIEW OF UNCERTAINTIES MANAGEMENT

June 2, 2022 • DANIELA DIACONU (RATEN), VALÉRY DETILLEUX (BEL V), AGNIESZKA STRUSIŃSKA-CORREIA (BGE), ASTRID GÖBEL (BGE), JULIEN DEWOGHELAERE (MUTADIS), DIRK-ALEXANDER BECKER (GRS)

The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement n° 847593.

2 June 2022

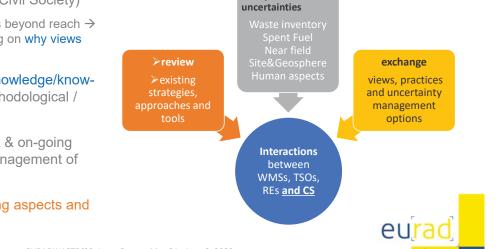
EURADWASTE '22, Lyon, France, May 31 - June 3, 2022

OUTLINES

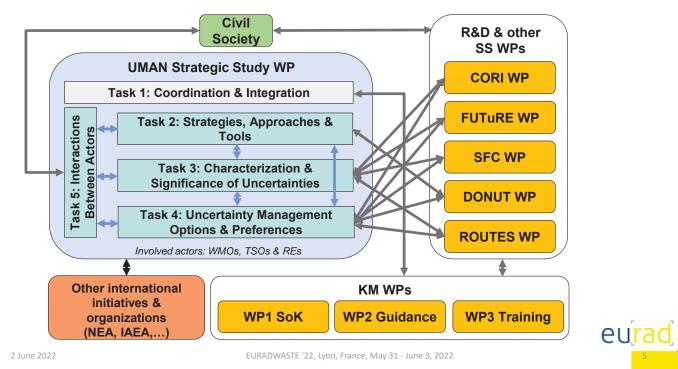
- RATIONALES
- UMAN OBJECTIVES and GENERAL APPROACH
- MUTUAL UNDERSTANDING ABOUT UNCERTAINTY MANAGEMENT
 - ACTORS INVOLVED
 - CLASSIFICATION SCHEMES
 - STRATEGY APPROACH
- APPLICATION OF UMAN METHODOLOGY TO UNCERTAINTIES ASSOCIATED WITH SITE AND GEOSPHERE
 - SIGNIFICANCE FOR SAFETY OF SITE AND GEOSPHERE UNCERTAINTIES
 - FEEDBACK FROM WORKSHOPS AND SEMINARS
- OUTLOOK
- CONCLUSIONS

WHY A STRATEGIC STUDY ON UNCERTAINTIES?

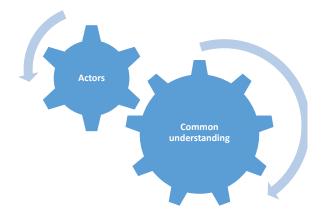
- · Decisions associated with RWM programmes are made in the presence of irreducible and reducible uncertainties
- early programme phases
 - choices are made on the basis of limited information,
 - must be confirmed before or during construction or operation
- end of the process
 - uncertainties will inevitably remain
 - · demonstrate they do not undermine safety arguments
- · along the programme
 - transparency must be provided → effective public information and stakeholders participation in the decision-making process
- Uncertainties management of a key element of successful programme planning and of the safety case of waste management facilities, in particular, of waste disposal facilities due to the long time scales during which the radiotoxicity of the waste remains significant
- · Can uncertainty be managed ? If yes, how can it be managed?


2 June 2022

EURADWASTE '22, Lyon, France, May 31 - June 3, 2022

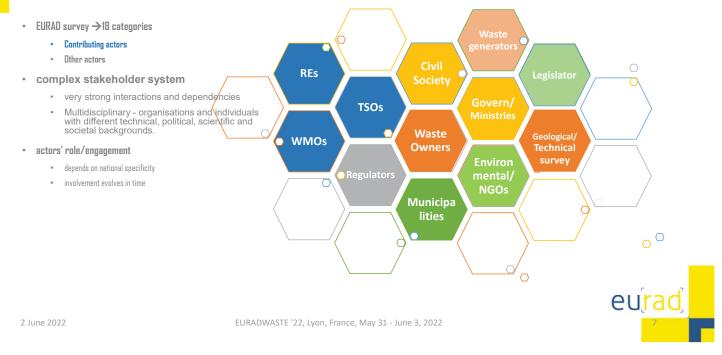

UMAN OBJECTIVES AND APPROACH

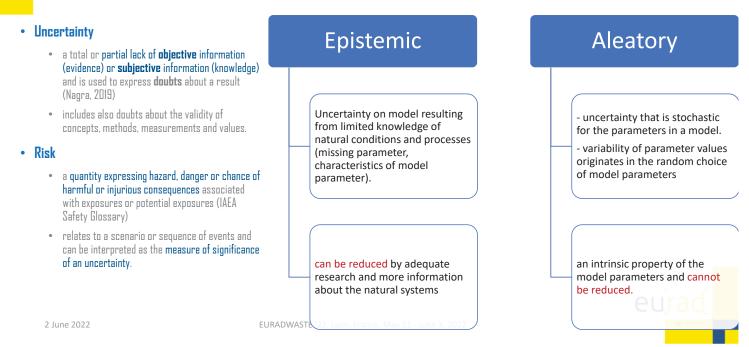
- Common understanding on uncertainty management and how it relates to risk & safety among (WMOs, TSOs, REs & Civil Society)
 - If a common understanding is beyond reach → achieve mutual understanding on why views are different
- Create a speace for sharing knowledge/knowhow and discuss common methodological / strategical challenging issues
- Identify the contribution of past & on-going R&D projects to the overall management of uncertainties
- Identify remaining and emerging aspects and needs



Identify and analyze safety relevant

INTERACTIONS INSIDE AND OUTSIDE EURAD




eurad

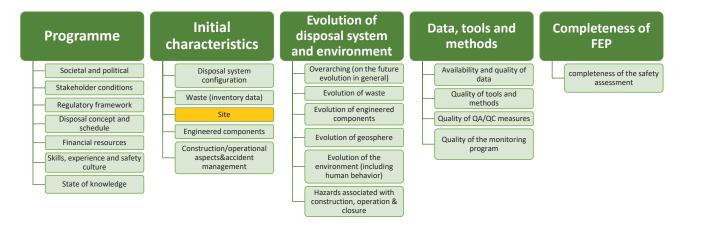
Reaching mutual understanding

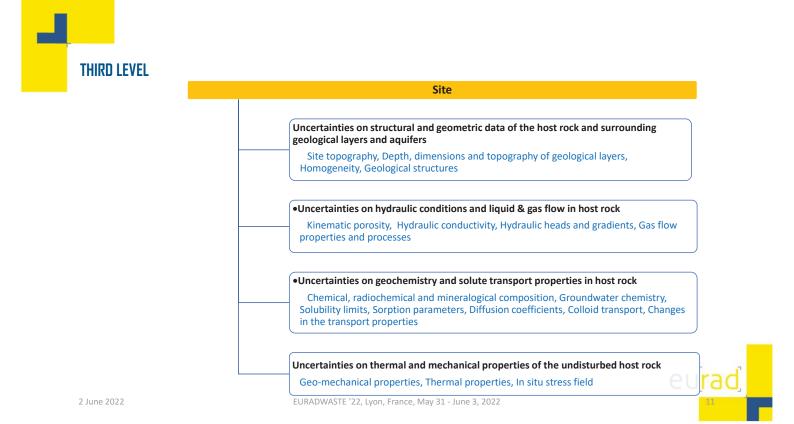
ACTORS INVOLVED IN RWM PROGRAMME

DEFINITIONS FOR A COMMON UNDERSTANDING

UMAN approach on uncertainties classification

2 June 2022


EURADWASTE '22, Lyon, France, May 31 - June 3, 2022



eurad

COMMON UNDERSTANDING OF UNCERTAINTIES CLASSIFICATION

1st UMAN Questionnaire \rightarrow 3 levels uncertainty scheme

UNCERTAINTIES CLASSIFICATION BASED ON AVAILABILITY & USE OF KNOWLEDGE

- 1. Programme uncertainties
- 2. Uncertainties associated with **initial characteristics** of **waste**, **site** and **engineered components**
- 3. Uncertainties in evolution of disposal system and its environment
- 4. Uncertainties associated with data, tools and methods used in the safety case
- 5. Uncertainties associated with the **completeness of FEPs** (Features, Events & Processes)

Knowledge is available	Lack of knowledge		
Known Knowns	Known Unknowns		
What is known & used	What we know we don't know		
Unknown/Ignored Knowns	Unknown Unknowns		
What is known but we are not aware of or do not consider	What we don't know we don't know		

Uncertainties associated with FEP completeness euro

UNCERTAINTIES CLASSIFICATION BASED ON AVAILABILITY & USE OF KNOWLEDGE

1. Programme uncertainties

- 2. Uncertainties associated with **initial characteristics** of **waste**, **site** and **engineered components**
- 3. Uncertainties in evolution of disposal system and its environment
- 4. Uncertainties associated with **data**, **tools and methods** used in the safety case

WIPP accident

The organic ingredients added as sorbents and neutralizers reacted with the nitrate-salt waste and created gases that increased the pressure in the drum. The materials self-heated and combusted. The combination of the nitrate salt residues, organic sorbent (Swheat Scoop®), and neutralizing agent (TEA) represented a reactive chemical mixture of fuels and oxidizers.

(P.Thakur , B.G. Lemons, and C.R. White - The Magnitude and Relevance of the February 2014 Radiation Release from the Waste Isolation Pilot Plant Repository in New Mexico, USA, 2016)

Knowledge is available	Lack of knowledge
Known Knowns What is known & used	Known Unknowns What we know we don't know
Unknown/Ignored Knowns	Unknown Unknowns
What is known but we are not aware of or do not consider	What we don't know we don't know
Uncertaintie	s associated
with FEP co	mpleteness $eu[ac$

2 June 2022

EURADWASTE '22, Lyon, France, May 31 - June 3, 2022

UNCERTAINTY CLASSIFICATION MATRIX

5. Uncertainties associated with FEP

completeness

	Known unknowns	Unknown/Ignored Knowns	Unknown Unknowns
1. Programme uncertainties			
2. Uncertainties associated with initial characteristics			
3. Uncertainties in the evolution of the disposal system & its environment			
4. Uncertainties associated with data, tools & methods used in the safety case			

UMAN approach on uncertainties management

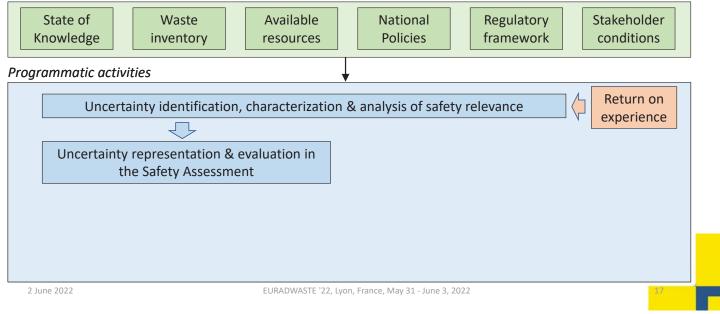
Iterative process grouping all activities aimed at identifying, recording, characterizing, classifying, analyzing, treating, assessing, reducing, avoiding and mitigating any type of uncertainties (technical, scientific, social, politic, financial,...).

2 June 2022

EURADWASTE '22, Lyon, France, May 31 - June 3, 2022

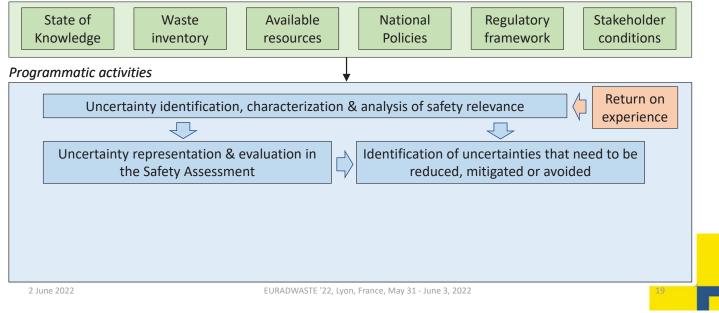
ELEMENTS OF AN UNCERTAINTY MANAGEMENT STRATEGY

Prevailing circumstances

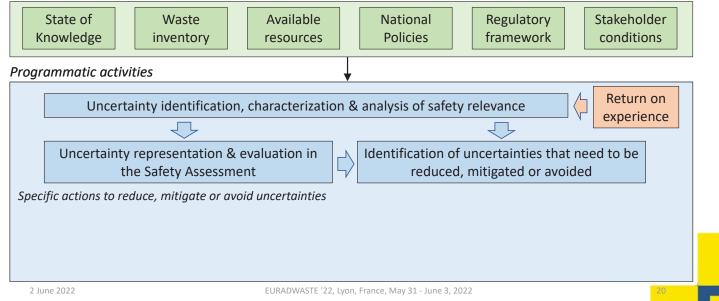

KnowledgeinventoryresourcesPoliciesframeworkconditions
--

eura

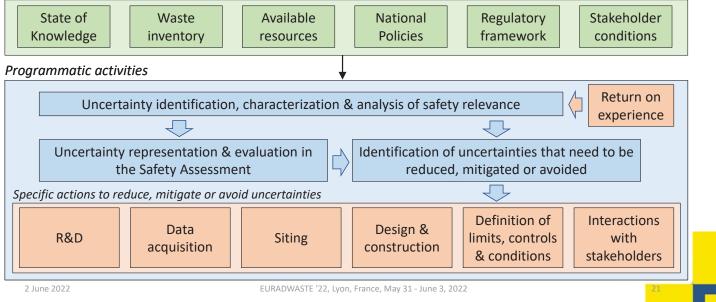
ELEMENTS OF AN UNCERTAINTY MANAGEMENT STRATEGY


Prevailing circumstances

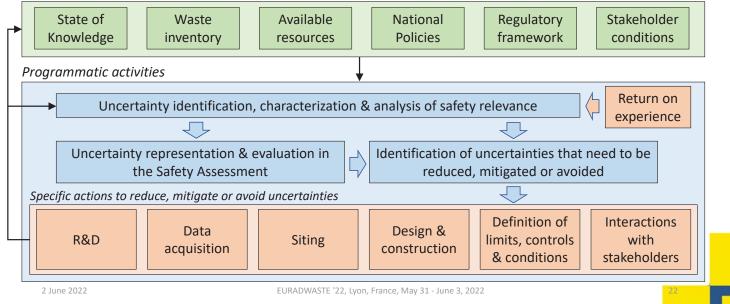
ELEMENTS OF AN UNCERTAINTY MANAGEMENT STRATEGY Prevailing circumstances State of Waste Available National Regulatory Stakeholder Policies framework conditions Knowledge inventory resources Programmatic activities Return on Uncertainty identification, characterization & analysis of safety relevance experience • applying statistical methods on relevant (measured) data Uncertainty representation & evaluation in modelling the Safety Assessment • quantification by expert judgement • accuracy of measurements and detection limit of equipment • Deterministic vs. probabilistic approaches exclusion of poor quality/inappropriate data Conservative & bounding values/assumptions Specific scenarios to assess potential consequences of possible site evolutions Stylized approaches 2 June 2022 EURADWASTE '22, Lyon, France, May 31 - June 3, 2022


ELEMENTS OF AN UNCERTAINTY MANAGEMENT STRATEGY

Prevailing circumstances

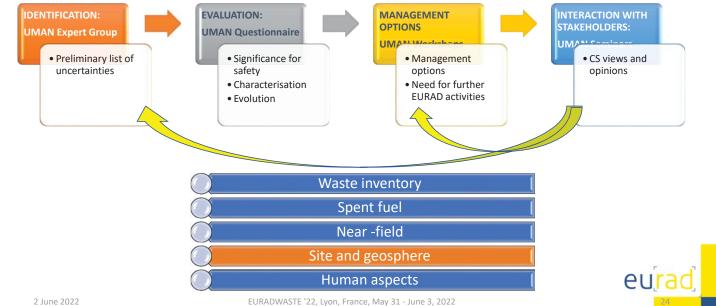

ELEMENTS OF AN UNCERTAINTY MANAGEMENT STRATEGY

Prevailing circumstances


ELEMENTS OF AN UNCERTAINTY MANAGEMENT STRATEGY

ELEMENTS OF AN UNCERTAINTY MANAGEMENT STRATEGY

Prevailing circumstances

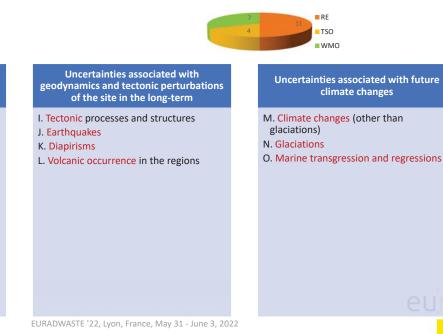

Application of the methodology to uncertainties associated with site and geosphere

2 June 2022

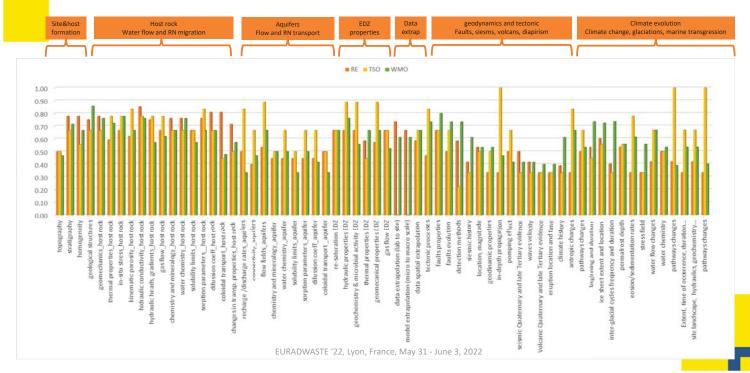
EURADWASTE '22, Lyon, France, May 31 - June 3, 2022

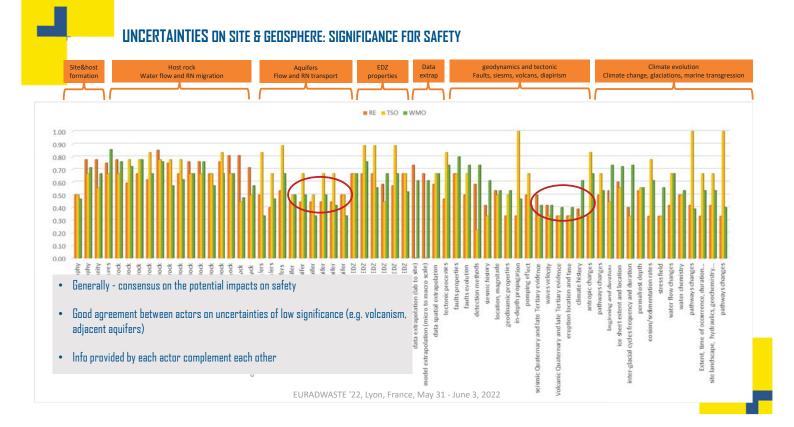
IMPLEMENTATION OF UMAN METHODOLOGY

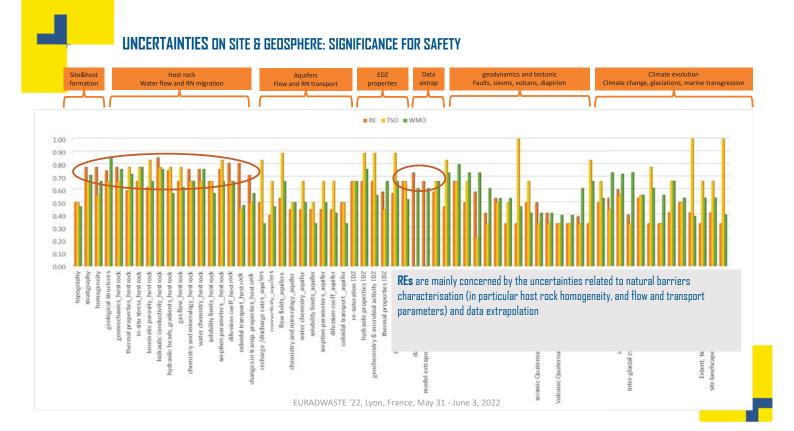
SITE AND GEOSPHERE

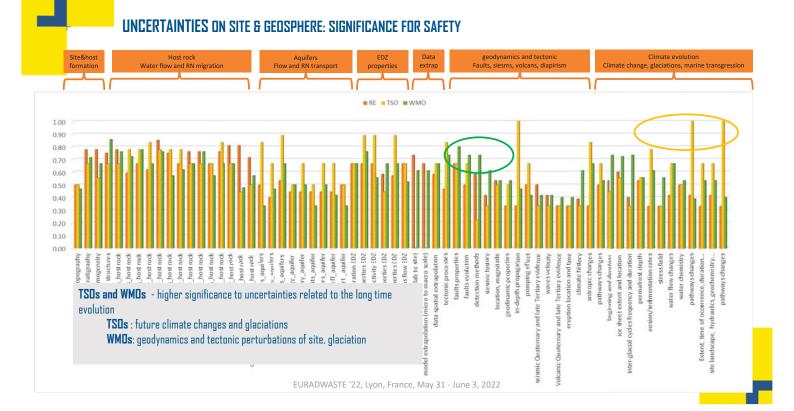

Survey on a comprehensive list of uncertainties

• 15 topics – 64 parameters and processes ightarrow 22 answers


Uncertainties to be taken into consideration when conceptualizing natural barriers and aquifers


- A. Structural and geometric data of the host rock and surrounding geological layers and aquifers
- B. Thermal and mechanical properties of the undisturbed host rock
- C. Hydraulic conditions and liquid and gas flow in the undisturbed host rock
- D. EDZ properties
- E. Hydraulic conditions and properties of adjacent aquifers
- F. Geochemistry and solute transport properties in the host rock
- G. Geochemistry and solute transport properties in the adjacent aquifers
- H. Data and model representativeness


2 June 2022



UNCERTAINTIES ON SITE & GEOSPHERE: SIGNIFICANCE FOR SAFETY

SITE AND GEOSPHERE SAFETY RELEVANT UNCERTAINTIES

5. Uncertainties associated with FEP completeness

			completeness		
		Known unknowns	Unknown/Ignored Knowns	Unknown Unknowns	
1. Programme uncertainties					
	Hydraulic conductivity	Upscaling errors, saturation recovering			
2. Uncertainties associated with initial characteristics	Sorption	Speciation, anionic species, reversibility, Organic Matter		Other processes speeding up migration	
	Faults	Locations, detection Undetected faults			
	Heterogeneities of host rock	Discontinuities; anisotropy, gradients			
3. Uncertainties in the evolution of the disposal system & its environment	Faults	Reactivation	new faults formation		
	Climatic evolution (glaciations)	Start &duration Isostatic adjustment Ice thickness Erosion Permafrost layer and temperatures	Depth and location of glacial erosion (mapping quaternary sediments)	Evolution of glaciation	
4. Uncertainties associated with data, tools & methods used in the	Sorption	Kd - measurement and models accuracy	Changes in geochemistry		
safety case	Heterogeneities of host rock	Transport properties			

MANAGEMENT OPTIONS - UMAN WORKSHOPS

What UMAN Workshops are?

- Platform for **networking** among WMDs, TSDs and REs
- Identify the views and preferences of WMDs, TSDs and Res
- Identify and understand differences among these views and preferences (if any)
- Identify remaining and emerging issues/needs for future EURAD activities (RD&D, KM or strategic studies)
- Input for UMAN Seminars (with CS participation)

Preferred Management strategy

- Iterative approach
- · Taking into account different views of actors
- · Not all uncertainties are accessible to rigorous statistical assessments
- Main steps identified in management uncertainties :
 - Identification
 - Analysis of safety relevance (initial programme phase)
 - Uncertainty characterization
 - Classification and associated actions (reduce / bound / mitigate)
 - Conceptualisation in Safety Assessment/Performance Assessment.

EURADWASTE '22, Lyon, France, May 31 - June 3, 2022

eurad

MANAGEMENT OPTIONS

Hydraulic conductivity	Sorption	Homogeneity	Faults	Glaciations	
Site characterization	Creation of knowledge	Site characterization	Creation of knowledge	Creation of knowledge	
Safety assessment with	Safety assessment with	Safety assessment with	Screening of FEP's list	Screening of FEP's list	
sensitivity/uncertainty	sensitivity/uncertainty analysis	sensitivity/uncertainty	Safety assessment	Safety assessment with	
analysis		analysis	Geological mapping	sensitivity analysis	
Laboratory and field tests	Laboratory and field tests	Statistical methods on data	Modelling	Modelling	
Statistical methods on	I methods on Statistical methods on data		Site characterization	Site characterization	
data		Modelling		Alternative and 'What if' scenarios	
	Consideration of accuracy	Site characterization	Engineering solutions		
of measurements	of measurements	Engineering solutions	Alternative and 'What if' scenarios		
Modelling at laboratory	Modelling	Conservative assumptions (if necessary) for deterministic			
and field scale	Site characterization				
Conservative assumptions (if necessary) for deterministic necessary) for deterministic	calculation				
		Stochastic modelling			
calculation	calculation				

Stochastic modelling

2 June 2022

Alternative scenarios

Stochastic modelling EURADWASTE '22, Lyon, France, May 31 - June 3, 2022

MANAGEMENT OPTIONS - MAIN OUTCOMES

Management options related to site&geosphere

- Generally good agreement on UM strategy
- Preferred uncertainty management options might differ among EU members, depending on host rock and the associated safety concept.
- further discrepancies may result from the **actors' role**
- Iterative approach and communication/regular dialog with stakeholders, particularly with the public, as a very important part of the general management strategy.
- WMOs and TSOs interested in developing management strategy for safety-relevant uncertainties in compliance with the requirements.
- REs oriented to much broader investigations towards a sound scientific basis for a mechanistic understanding of the processes and for assessing safety significance, including also processes that are not safety relevant

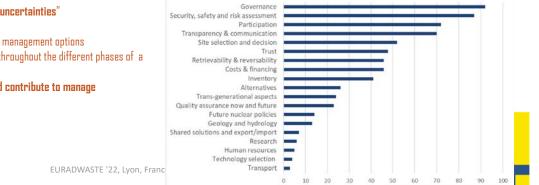
Management options	CNRS	LEI*	RATEN ICN*	SCK-CEN	STUBA
Site characterization	×	×	×	×	
Safety assessment with sensitivity/uncertainty analysis		×	x		
Statistical methods on data	×		× :	×	
Modelling	×	×	×		
Site characterization	×	×	×	x	
Engineering solutions		×			
Conservative assumptions (if necessary) for deterministic calculation		×	. *	×	
Stochastic modelling	ж	×	х		
				eu	rad

2 June 2022

EURADWASTE '22, Lyon, France, May 31 - June 3, 2022

EXCHANGES ON UMAN SEMINARS

- Why UMAN Seminar ? to perform a pluralistic analysis of UMAN key outcomes and enlarge the results.
- Who ? Different types of mandated actors + Civil Society, regulatory bodies and international organisations
- How? Integrative process of yearly seminars


Seminar 2 focused on "Site Geosphere uncertainties"

- Preferences regarding uncertainties management options
- Possible evolutions of uncertainties throughout the different phases of a disposal programme
- How the interactions with CS could contribute to manage uncertainties ?

Seminar 1 - global perspective on uncertainties and their management

 Technical uncertainties can be addressed, but non-technical/programme uncertainties which matter to CS are also important

- related to the "process" (governance) & stakeholder involvement
- related to knowledge management (transfer of data over generations,...)

EXCHANGES ON SEMINAR 2

Uncertainties:

- fault detection
- climate evolution (future glaciation)
- sites' natural resources

Generic outcomes:

- Stepwise, transparent and flexible decision-making process needed for managing these uncertainties
- Possibility and means for CS to be involved early in this R&D process and to monitor the situation now and in the future (rolling stewardship?)

•

General approach:

Safety significance – technical view

Perspectives of CS group involved in EURAD

Restitution of WG and generic discussion

Working Group discussions based on concrete cases

Climate evolution:

- transparent protocol, scenarios regularly and pluralistically assessed, model's deviation ightarrow trigger for dialog
- two-levels discussions:
 - level of experts (including non-institutional experts) to exchange on technical knowledge,
 - experts and stakeholders to discuss programme, roadmaps and also decisions.
- discussion on climate models should foresee a longer-term interaction between government, experts and society.

```
2 June 2022
```

EURADWASTE '22, Lyon, France, May 31 - June 3, 2022

OUTLOOK

Workshop on Human Aspects (June 2021)

- Public acceptance of the repository at potentially suitable or projected locations,
- Schedule to be considered for implementing different phases of disposal programme
- · Adequacy of safety-related activities during construction for the implementation of safety provisions
- "New knowledge"
- Workshop on Spent Nuclear Fuel (February 2022)
 - · Fuel history data, reactor operation and irradiation conditions.
 - Nuclear data (e.g. cross-sections, fission product yields, decay data)
 - Performance of spent nuclear fuel (SFN) during (dry) interim storage (e.g. degradation mechanisms)
- Workshop on Waste inventory (with participation of LABONET) April, May 2022.
 - Uncertainties on the physico-chemical conditions in the storage or disposal facility
 - Uncertainties on the radionuclide activity (including the scaling factor)
 - Uncertainties on the chemical composition (with a special attention to organic content)
- Workshop on Near Field (2nd wave) March-April 2023
 - Survey on going at EURAD level

Seminar on Human Aspects (14-15 June 2022)

Seminar on Spent Nuclear Fuel (October 2022)

Seminar on Waste inventory (October 2023)

eurad

Course on Uncertainties Management (November: 2022)

SOME RECOMMENDATIONS ON R&D ACTIVITIES

Theoretical studies with respect to uncertainties on:

- long-term effects: future climate changes, effects on host rock and biosphere
- structural geology in combination with geochemistry and geostatistics

Experimental studies

- Hydraulic conductivity time for clay saturation diffusion/advection in host rock, plugs&seals; hydraulic conductivity of host rock and EDZ; H2 production by containers corrosion or cement enforcements, H2 transport, counter pressure build-up)
- · Sorption of anionic species large scale diffusion experiments in clay for low but non-zero Kds
- Lab scale identification of relevant sorption processes / mechanism, mechanistic sorption models bottom up approach for Kd understanding.for improved sorption models
- · upscaling from batch systems on pure phases to the real host rock in confined conditions

Computer codes development

- geochemical codes enabling to make a direct use of uncertainties based on pdfs or other representations, combining uncertainty components in a model other than additive, which led to unrealistic results due to uncertainty propagation
- Glagiations coupled climate-permafrost-flow models; Validation of permafrost depth models; Influence of decompaction on host rock properties from analogues and modelling

2 June 2022

EURADWASTE '22, Lyon, France, May 31 - June 3, 2022

SOME RECOMMENDATIONS ON GUIDANCE/SOK/STRATEGIC STUDY

Strategic studies

- Climate changes common approach how to treat climate changes (glaciation periods) not restricted to national borders.
- Homogeneity identification of what is really understood by "homogeneity" within what degree of variation of what safety relevant property (retention, hydraulic or thermal conductivity, fracture mechanics,....) a host rock volume is considered homogeneous.

CONCLUSIONS

- There is a large number of actors invilved and various types of uncertainties (technical, scientific, social, politic, financial....). that must be managed in a disposal programme
- Management of uncertainties should include all activities aimed at identifying, recording, characterizing, classifying, analyzing, treating, assessing, reducing, avoiding
 and mitigating any type of uncertainties and involves different categories of actors.
- Uncertainties management is an iterative approach evolving all along the programme implementation.
- Uncertainties significance for safety and management options depend on the repository type, stage in the programme implementation and actor' role.
- There are available several options to reduce, avoid or mitigate uncertainties, which have been identified and validated by WP UMAN.

2 June 2022

EURADWASTE '22, Lyon, France, May 31 - June 3, 2022

